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A dynamical system controlled by a k-step-ahead minimum variance controller is
considered. Independent, identically distributed one-step-ahead process residuals
are given for use in statistical process monitoring schemes. Problems encountered
in the application of the monitoring schemes are discussed, particularly with
respect to detecting process upsets. Upsets may occur in any of three ways, for
which expressions are derived. It is shown that the mechanism by which upsets
occur influences the ability of the residuals to detect the upsets. It is also shown
that the effect of the disturbance on the residuals is independent of the process
time delay k. The ability of the residuals to detect a change in the process
dispersion is discussed. It is shown that the disturbance dynamics do not alter this
ability. This information is useful in obtaining accurate estimates of control chart
performance and directing the statistical process control practitioner in modifying
the control chart design. Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The industrial activities that transform resources into finished goods are dynamic processes exhibiting
time-correlated output behavior. In this process, one may deviate from the desired design parameters
due to controllable and uncontrollable causes, thus producing products with highly variable output

characteristics. Common automatic process control (APC) techniques apply feedback control loops to
compensate for this behavior. Compensation takes the form of adjustments in one or more manipulable variables
in order to reduce the variability of one or more output characteristics. In effect, the variability is transferred to
the manipulable variables.

Sometimes the variability is due to process upsets (system variations due to special causes) which deviate
from the underlying process models. The APC approach described above is short term in that it does nothing to
remove the causes of the unwanted variation. In such cases it may be more effective (and less costly in the long
term) to remove the causes of these upsets rather than compensate for them. Statistical process control (SPC)
techniques have been developed to aid in the detection of these upsets and in the identification of their causes.
Once a process upset is detected, the process is stopped until its cause is identified and removed. But, some
process upsets could not be removed, so they should be compensated via APC. Or some upsets may be of short
duration, thus making compensation a less costly alternative to SPC (see Box and Kramer1 and Nugent2).
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The activity of detection is also called process monitoring. Control charts are relatively simple tools which
have been developed to facilitate process monitoring. They include Shewhart charts, exponentially weighted
moving average (EWMA) charts, and cumulative sum (CUSUM) charts. The assumption usually used to
evaluate the properties of these monitoring tools is that the observations are independent identically distributed
(i.i.d.) random variables.

Many authors have studied the performance characteristics of these control charts. The most frequently used
performance measure is the average run length (ARL). Vance3 proposed a methodology for calculating the
exact ARLs for CUSUM charts. Crowder4 used the Fredholm integral approach to evaluate the ARL of the
EWMA chart. Lucas and Saccucci5, applying a Markov chain approach, showed that the ARL performance
of the EWMA chart is comparable to that of the CUSUM chart, except in worst-case scenarios, in which the
EWMA chart can be slower to react to process shifts. Champ and Woodall6 also used a Markov chain technique
to demonstrate that supplementary runs rules cause the Shewhart chart to be more sensitive to small shifts in the
mean, although it may not be as sensitive as the CUSUM chart. The decision to use any of these standard charts
is often based upon criteria other than ARL performance, like ease of use and prior practice.

If the data are not independent, but autocorrelated, the standard charting techniques may be ineffective for
monitoring and improving process quality. Among others, Johnson and Bagshaw7 and Alwan8 have shown
that the primary consequence of positive autocorrelation is to increase the frequency of false alarms. This is
equivalent to decreasing the ‘in-control’ ARL of the control chart. Stoumbos and Reynolds9 showed that
although autocorrelation can have a significant effect on the in-control performances of some EWMA charts,
their relative out-of-control performances under independence are generally maintained for low to moderate
levels of autocorrelation.

To deal with correlated data, Vasilopoulos and Stamboulis10 suggested modifying the control limits to
improve the performance of the standard Shewhart chart. Another method for dealing with correlated data is the
use of residuals chart. Alwan and Roberts11, Montgomery and Friedman12 and Montgomery13 recommended
fitting an appropriate time series model to the process data, deriving a sequence of residuals, and applying
control chart techniques to the resulting sequence. Process upsets should appear in the residuals.

One criticism of this approach is that when positive correlation is present it may be very difficult to detect
process upsets, although the probability of detecting shifts almost immediately is high. Harris and Ross14,
Ryan15, Wardell et al.16 and Yashchin17 have shown that positive correlation increases the ‘out-of-control’ ARL
of the control chart. Runger et al.18 suggested modifying standard CUSUM chart design guidelines applied to
the residuals to improve the chart performance.

This approach also suffers from the necessity of finding an appropriate time series model of the process data,
which may be quite difficult to obtain in practice. Montgomery and Mastrangelo19 suggested monitoring the
residuals from an EWMA which approximates the exact time series model. Note that for some models the
EWMA gives a good approximation and a poor one for other models.

Recently, Runger and Willemain20 suggested using an unweighted batch means (UBM) chart in environments
with large volumes of autocorrelated observations. In this chart, data are divided into mutually exclusive batches
of finite number of successive observations. Then, the chart plots the arithmetic average of each batch with the
expectation that the plotted values show reduced correlation. The authors show that for an AR(1) output process,
the performance of the residuals chart is degraded as the positive correlation between observations increases.
The UBM chart is shown to perform better than the residuals chart in such cases. Conversely, in some other
cases UBM charts may not be advantageous (see Nugent2). Although, the UBM chart requires no time series
modeling, one should find a batch size that will give approximately uncorrelated batch averages.

Many authors have written about the integration of APC and SPC methodologies: MacGregor21, Box and
Kramer1, Box et al.22, Vander et al.23, Vander Wiel24, Box and Luceno25, Capilla et al.26, Castillo27,28.
Most researchers have considered the one-step-ahead minimum variance (MV) control problem, producing
output observations which are i.i.d. Although the controller may be capable of eliminating special cause mean
shifts as well as common cause variation, this often requires increasingly large control actions. In such cases,
it is desirable to detect and remove the cause of the shift. Most researchers have considered one specific
way of mean shift occurrence that corresponds to one of the cases investigated in this paper. In this case,
the effect of mean shift on the output observations will diminish in the long run following its occurrence.
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Some authors suggested monitoring the control variable instead of output observations to improve the chance
of detection (Faltin and Tucker29, Box and Kramer1, Montgomery et al.30, Tsung et al.31, Jiang et al.32, Jiang
and Tsui33).

However, in many systems, particularly those with short sampling intervals, it is common to encounter time
delays. Time delays can arise from delays in the process itself or from delays in the processing of sensed signals.
For example, time delays often occur in chemical plant processes due to the time required for material to flow
through pipes.

In this paper (see also an earlier version, Nugent and Baykal-Gursoy34) we consider a dynamic process with k

periods of delay. In Section 2 we begin developing the system model and the k-step-ahead MV controller. In the
remainder of the paper, we assume that the controller is implemented and tuned appropriately to compensate for
common cause variation. The residuals will be employed to aid in shift detection.

In Section 3, we derive general expressions for the output and residuals when process upsets enter the system
in each of three ways. These may be used to model any type of disturbance process as well as any type of process
upsets. With this information, the practitioner can better predict how a given monitoring scheme will perform.
If the expected detection time of the proposed scheme is too long, the expressions may point the way to more
sensitive methods.

2. SYSTEM MODELING

In considering the k-step-ahead control problem, we formulate the optimal control problem. This requires the
specification of the process dynamics, the environment, the performance criterion, and the restrictions on the
control law.

2.1. Process model

Consider a discrete, time-invariant, linear dynamical process with one input, u, one output, y, and disturbance d .
The input–output relation together with the effect of the environment may therefore be described by the
following equation,

yt = B ′(z−1)

A′(z−1)
ut−k + dt

where A′(z−1) = 1 + a′
1z

−1 + · · · + a′
mz−m, and B ′(z−1) = b′

0 + b′
1z

−1 + · · · + b′
mz−m. Here, the backward

time shift operator, z−1, is defined by z−kyt = yt−k. In the notation of Box et al.22,35 the backward shift operator
is denoted as ‘B’. Note also that a time delay of k sampling intervals is present in the system. There is no loss of
generality in assuming polynomials are of order m since trailing coefficients may always be set equal to zero.

Assume that the disturbance dt is a stationary Gaussian process36 that is represented as

dt = λ
C′(z−1)

A∗(z−1)
εt

where {εt } is a sequence of i.i.d. normal (0, 1) random variables and λ is a scaling factor which specifies the
dispersion of the underlying white noise process. The polynomials are C′(z−1) = 1 + c′

1z
−1 + · · · + c′

mz−m,

and A∗(z−1) = 1 + a∗
1z−1 + · · · + a∗

mz−m. (Stationarity of d(t) requires that all zeros of the polynomial
A∗(z−1) must lie inside the unit circle, i.e. |z0| < 1.)

Therefore, the entire system is represented by the equation as illustrated graphically in Figure 1,

yt = B ′(z−1)

A′(z−1)
ut−k + λ

C′(z−1)

A∗(z−1)
εt (1)
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Figure 1. Model of single-input, single-output dynamical system

By defining the following polynomials,

A(z−1) = 1 + a1z
−1 + · · · + anz

−n = A′(z−1)A∗(z−1)

B(z−1) = b0 + b1z
−1 + · · · + bnz

−n = B ′(z−1)A∗(z−1)

C(z−1) = 1 + c1z
−1 + · · · + cnz

−n = C′(z−1)A′(z−1)

the model may be rewritten in the simplified form as

A(z−1)yt = B(z−1)ut−k + λC(z−1)εt (2)

thus making the output process an ARMAX (autoregressive moving average with exogenous input) process.
Again note that there is no loss of generality in assuming that all polynomials are of order n, since trailing
coefficients may always be set equal to zero.

2.2. Minimum variance control

Although the performance criterion for determining the optimal controller can be chosen in any number of ways,
the typical approach is to minimize a quadratic cost function. One of the most frequently used quadratic cost
functions is the variance of the output y. The optimal control law that minimizes the output variance is the MV
controller. It should have the property that the value of u at time t is a function only of the outputs and the
control signals up to and including time t .

The solution to the MV control problem is well defined and is given by

ut = − G(z−1)

B(z−1)F (z−1)
yt (3)

where the polynomials F and G of orders k − 1 and n − 1, respectively, are defined by the following
Diophantine–Aryabhatta–Bezout identity

C(z−1) = A(z−1)F (z−1) + z−kG(z−1) (4)

Clearly, F(z−1) is the quotient when C(z−1) is divided by A(z−1), and z−kG(z−1)/A(z−1) is the remainder.
These polynomials can be obtained using long division.

Substituting Equations (3) and (4) into Equation (2) results in the regulation error of the MV system

yt = λF(z−1)εt

= λ(1 + f1z
−1 + · · · + fk−1z

−(k−1))εt (5)
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Under the MV control law, the controlled output is a moving average of order k − 1. Thus, if the time delay
is one unit, the controlled output exhibits i.i.d. behavior, since yt = λεt . Although the MV controller is valid
even if it is unstable, the output variance increases for |fi | > 1, since Var[y] = λ2(1 + f 2

1 + f 2
2 + · · · + f 2

k−1).

Here, stability of a controller means that u(t) cannot be represented as an ever decreasing sequence of past
outputs. Note that, for k = 2, |f1| > 1 corresponds to a zero of F(z−1) that is outside the unit circle (an unstable
zero), thus giving an unstable controller.

2.3. Residuals for k-step-ahead MV controllers

Most researchers assume a system in which control actions affect the process output in the period immediately
following the control action. This is equivalent to assuming that the process attains a steady state during the
interval between sampling instances. It is frequently encountered in parts manufacturing applications and, if
the sampling interval is long relative to the effects of the process dynamics, the process industries as well.
The output of such a system under MV control is a sequence of i.i.d. white noise deviates.

However, we are interested in the general case when there exists one or more periods of time delay in the
system. Equation (5) indicates that the output of a system with k periods of delay is a moving average of order
k − 1. Thus, the output observations are autocorrelated and will likely produce an increase in the number of
false alarms if incorporated into the process monitoring scheme.

The residuals, rt , are defined as the difference between the actual output, yt , and the one-step-ahead forecasts
of the output at time t , made at time t − 1, ŷt |t−1. The MV one-step-ahead predictor of the output is described
by

ŷt |t−1 = E[yt |εt−1, εt−2, . . . ] = λ(f1εt−1 + f2εt−2 + · · · + fk−1εt−k+1)

= λ(F − 1)εt (6)

where we have compacted our notation by omitting the backward shift operator, z−1. In what follows, all
polynomials remain functions of z−1 unless otherwise noted. Combining Equations (5) and (6), we obtain the
system residuals, rt , given by

rt = yt − ŷt |t−1

= λFεt − λ(F − 1)εt

= λεt (7)

These residuals are i.i.d. and normally distributed about zero mean with constant variance λ2. Using the
residuals, we can apply the SPC techniques mentioned above without violating any of the assumptions about the
nature of the observations. We also see that the residuals are independent of the process time delay, k. Note that
if the model parameters cannot be known perfectly the residuals will not be white, since the MV controller
depends on these estimates. For a fuller discussion of the MV controller, the reader is directed to a stochastic
control text, e.g. Åström37 and Box et al.22,35.

3. PROCESS MONITORING USING RESIDUALS

Control charts designed using the residuals described in Equation (7) will demonstrate ‘in-control’ ARLs exactly
like those of standard control charts. However, the ‘out-of-control’ ARLs will be altered by the system dynamics.
In previous studies, this has been shown for the case when the output observations are modeled by among
others, an AR(1) process14–16,18–20. In that case, large positive autocorrelation resulted in very large ARLs for
the residuals chart. Runger and Willemain20 recommended using the UBM chart to overcome this deficiency.
Unfortunately, they only considered the AR(1) process. Other output processes may provide very different
results. For example, the authors are aware of at least one case of the ARMA(1,1) model in which the UBM
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Figure 2. Model of shift entering dynamic system independently of the disturbance process

charting procedure is not advantageous2. Additionally, under the UBM procedure, new batch sizes must be
derived for each new process being considered.

In the discussion that follows, we examine a process subject to an additional mean shift in the disturbances.
We derive expressions for the output when the shift enters in each of three ways. We also derive expressions for
the residuals and demonstrate how standard SPC charts perform using these statistics.

3.1. Shift enters independently of disturbance process

This case is illustrated mathematically by the following expression:

dt = λ
C′

A∗ εt + µt (8)

where µt is the value of the mean shift at time t . Assuming a system as in Equation (1), Figure 2 provides a
graphical representation of the situation. This type of shift may be represented as a measurement bias; when
detected the measurement device is recalibrated.

The presence of the process shift produces the following result:

yt = B ′

A′ ut−k + λ
C′

A∗ εt + µt

= B

A
ut−k + λ

C

A
εt + µt (9)

If we assume that the system is controlled with a MV controller and apply Equation (3) and the identity
Equation (4), we obtain the equation for the system output at time t ,

yt = λFεt + M1µt (10)

where

M1 =
(

A∗F
C′

)

= (1 + m1
1z

−1 + m1
2z

−2 + · · · ) (11)

and m1
i is the ith coefficient of the polynomial M1. We see that the output behavior is clearly affected by the

presence of the process shift. However, the magnitude of this effect depends upon the coefficients of M1.
The one-step-ahead predictor is given by Equation (6), which depends upon the noise innovations, εt .

To implement the predictor, we make use of Equation (7), giving

ŷt |t−1 = (F − 1)rt (12)
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The effect of a mean shift on the process residuals may be found by combining Equations (10) and (12)

rt = yt − ŷt |t−1

= λFεt + M1µt − (F − 1)rt

= λεt + A∗

C′ µt (13)

The ability of the residuals to display the effect of the mean shift depends on the inverse dynamics of the
disturbance process. It may be magnified, remain unchanged, or be reduced. We note that this ability is also
independent of the process time delay, k.

Example 1. Consider a simple example with a first-order plant and a first-order autoregressive AR(1)
disturbance. The temperature response of a continuously stirred tank reactor to a temperature change in the
cooling water flow to its jacket is a first-order plant described by the following model:

yt = ωz−k

1 − δz−1
ut + dt (14)

where ω = 1 − δ, δ = e−T/τ , τ is the system time constant (time when response is e−1 times the initial value),
and T is the discrete sampling interval. The disturbances are described by a first-order autoregressive model,
defined as

dt = 1

1 − φz−1 εt (15)

When −1 < φ < 1, the disturbance process is said to be stationary, meaning that its joint probability distribution
is unaffected by a change of time origin. Large positive values of φ produce series which exhibit definite
trends. Large negative values of φ produce series which tend to oscillate rapidly. It is reasonable to suggest
that disturbances to the system described above will tend to display trending behavior and, therefore, may be
described by Equation (15) where 0 < φ < 1.

Given a system model as in Equation (1), the following polynomials may be derived from the definitions
given by Equations (14) and (15):

A(z−1) = A′(z−1)A∗(z−1) = (1 − δz−1)(1 − φz−1) = (1 − (δ + φ)z−1 + δφz−2)

B(z−1) = B ′(z−1)A∗(z−1) = ω(1 − φz−1)

C(z−1) = C′(z−1)A′(z−1) = (1 − δz−1)

Equation (4) gives F(z−1) = 1 + φz−1 and G(z−1) = φ2(1 − δz−1).
Let λ = 1, k = 2, φ = 0.9, with a sampling time interval T = − ln(0.8)τ = 0.223τ , so that δ = 0.8 and

ω = 0.2. For such a system, applying Equation (3) leads to the MV two-step-ahead controller:

ut = − φ2(1 − δz−1)

ω(1 − φ2z−2)
yt

= −4.05(1 − 0.8z−1)

(1 − 0.81z−2)
yt (16)

If we assume that mean shifts, µt , enter the system from time to time as in Equation (8), the system output
becomes

yt = λFεt + M1µt

= (1 + φz−1)εt + (1 − φ−2z−2)µt

= (1 + 0.9z−1)εt + (1 − 0.81z−2)µt (17)
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Figure 3. The effect of the process dynamics on the ability of the residuals to detect a mean shift

The one-step-ahead forecasts are found from Equation (12) as,

ŷt |t−1 = (F − 1)rt = φrt−1 = 0.9rt−1 (18)

and the process residuals are given by Equation (13) as

rt = λεt + A∗

C′ µt

= εt + (1 − φz−1)µt

= εt + µt − 0.9µt−1 (19)

Therefore, for such a system, the ‘out-of-control’ ARLs for an SPC monitoring scheme using the system
residuals will be longer than ‘out-of-control’ ARLs predicted using i.i.d. data. Note that in this special case,
Equation (19) is similar to what was considered in previous studies in the context of SPC monitoring of AR(1)
process14–16,18–20.

Figure 3 demonstrates this effect for a step and ramp disturbance shift, µt . These figures demonstrate the
effect of the process dynamics on the ability of the residuals to detect a mean shift. In each, the size of the mean
shift (in terms of σ ) in the system is denoted by µt and the size displayed in the residuals by rt . Note that the
full effect of the step shift is displayed in the initial residual, but is significantly reduced in later periods.

To show this in practice, suppose a 1σ step shift enters the system at time t = 500. For such a system, Figure 4
shows a simulation of the output without control, the output with two-step-ahead MV control, and the control
signals for the two-step-ahead MV controller. The controlled process demonstrates a clear improvement over
the uncontrolled process. The controller is capable of compensating for both the process dynamics and the
mean shift. Note, however, that a considerable amount of control effort is expended. If costs are associated with
the control actions, this undesirable property could be remedied by implementation of a suboptimal control
strategy25,37.

Casual observation of the controlled output and the control variable in Figure 4, by drawing the 3σ lines,
shows that there will be a large number of false alarms in this system. Jiang et al.32 introduced signal-to-noise
(SN) ratios to predict the performance of SPC monitoring of a one-step-ahead APC controlled process. In Jiang
and Tsui33, SN ratios are used to predict the SPC chart performance of one-step-ahead minimum mean squared
error (MMSE) and proportional and integral (PI) controlled processes. Although, comparison of the SN ratios
of the residual, the controlled output and the control variable in our example suggests monitoring the output,
the large number of false alarms diminish their use. This is due to the fact that in k-step-ahead MV controlled
processes, the output is a moving average of order (k − 1), not i.i.d. as in the case of one-step-ahead MV
controlled processes.

Figure 5 shows the one-step-ahead residuals in time, an EWMA plot of the one-step-ahead residuals, and a
tabular CUSUM plot, showing both the upper and lower CUSUMs of the one-step-ahead residuals38. Plotting the
standard Shewhart chart using the one-step-ahead residuals shows that the mean shift is detected at t = 939, after
439 periods.
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Simulated Uncontrolled System Output with Step Disturbance
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2-Step-Ahead MV Controller Actions

-15
-10

-5
0
5

10
15

1 101 201 301 401 501 601 701 801 901

Time, t

C
on

tr
ol

 A
ct

io
n,

 u
(t

)

u(t)

t

Figure 4. Simulation of the uncontrolled output, controlled output, and control signal of the system in Example 1 with k = 2
and the MV control strategy. A comparison between the uncontrolled and controlled outputs shows that the control strategy

succeeds in reducing the output variation due to both the underlying disturbances and the additional step shift

For illustrative purposes, we want the ‘in-control’ ARL to be close to that of the Shewhart chart. One way
to do this is to design the EWMA chart with the smoothing coefficient ρ = 0.133 and the control chart width
L = 2.777, giving an ‘in-control’ ARL of approximately 370. With the EWMA chart of the process residuals
designed in this manner, a signal occurs in period 688, 188 periods after the step disturbance appears. Two more
signals occur after the first signal in periods 801 and 939. No false alarm occurs.

The CUSUM chart also detects the shift in period 688, 188 periods after the shift appears. Again, for
illustrative purposes, we want to match the ‘in-control’ ARL to that of the EWMA chart. The decision interval
is chosen to be h = 4.1 and the reference value k = 0.5. One more signal occurs at period 801. No false alarm
occurs.
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Shewhart Chart of 1-Step-Ahead Process Residuals
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CUSUM Chart of 1-Step-Ahead Residuals
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Figure 5. Shewhart, EWMA, and CUSUM charts of the residuals from the simulation results of Example 1. Casual study
reveals that the standard Shewhart chart detects a change in the mean within 439 periods, the EWMA chart signals
within 188 periods and the CUSUM within 188 periods. A step shift enters the system in period 500, persisting into

the observation horizon

In all cases, we see that the time until detection is much longer than we would predict if we assume that
the disturbance dynamics have no effect on the ability of the residuals to reveal a mean shift. To generalize
these results, a simulation study of this system was performed to determine the ability of each SPC chart for
residuals to detect two sizes of step disturbances. The results are based upon 2500 experimental runs. Each run
is a record of observations taken until each control charting method provides a signal. Charts were implemented
according to the parameter values mentioned above.

The simulation results are shown in Table I. The second column indicates the ‘in-control’ ARLs for each
charting technique. The results in this column are based upon 2500 experimental runs, each run being a
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Table I. ARLs for Example 1

Predicted Simulation Predicted Simulation
Method ARL0 ARL1σ ARL1σ ARL2σ ARL2σ

Shewhart 378.9 43.89 318.0 6.3 222.4
(5.1) (6.3) (4.7)

EWMA 382.9 9.73 230.3 4.0 124.5
(5.8) (4.6) ( 2.5)

CUSUM 386.0 9.85 279.2 3.6 134.7
(6.2) (5.9) (2.6)

simulation of the system during which no shift occurs. They show that the charts have been properly designed
to approximately match the ‘in-control’ ARLs. The third column indicates the predicted ARL if an uncontrolled
process is monitored where the outputs are i.i.d. and a 1σε step shift enters the system. These predicted ARLs
are calculated using the methods mentioned earlier. The fourth column shows the simulated ARL until detection
of a 1σε shift and the associated standard error. The fifth column lists the predicted ARL for charts monitoring
the uncontrolled process with i.i.d. outputs when a 2σε step shift enters the system. In the last column, each
block reports the ARL until detection of a 2σε step shift and the associated standard error.

The results obtained from simulation indicate that control charts designed under standard assumptions
perform poorly for this system. The actual ARLs are much longer than the predicted ARLs for this shift,
although both the EWMA and CUSUM charts display superior performance to the Shewhart chart.

Using the shift modification in Equation (19) and methods for approximating ARL values, such as Vance3

and Lucas and Saccucci5, we may adjust our run-length predictions. In particular, predicted 1σε shift ARLs for
each of the charts for the system of Example 1 may be updated using the following formula:

ARL = P1(1) + (1 − P1)(1 + ARL0.1σε ) = 1 + (1 − P1)ARL0.1σε (20)

where P1 = Pr{detecting 1σε shift in first period} and ARLx indicates the ARL given a shift of size x and we
have made use of Equation (19) to determine that a 1σε step shift will degrade to 0.1σε in the residuals after the
initial entry period into the system. In the case of the residual Shewhart chart, Equation (20) reduces to a value
of 318.6. For the residual EWMA chart, this reduces to 228.9. These values are comparable to those previously
reported14,16,18,20 and agree well with our simulation results. For example, in residual Shewhart charts, using
the formula given in Runger and Willemain20, we obtained an ARL value of 337.96 for 1σε step shift (note that
the table in their paper lists this as 345.87 which is just the ARL value of a 0.1σε step shift for a standard
Shewhart chart). Wardell et al.16 report a simulation result of 311.69 for the EWMA chart when φ = 0.95;
via interpolation we found the ARL value for 1σε step shift to be equal to 283.04.

Therefore, to achieve effective monitoring and shift detection, the SPC practitioner must either design control
charts which are more sensitive to smaller shifts or consider other methods such as batch means20.

3.2. Shift occurs within the disturbance process

This case is illustrated mathematically by the following expression:

dt = λC′εt + µt

A∗ (21)

where µt is again the value of the mean shift at time t . Figure 6 is a graphical representation of such a situation
when the system is assumed to be governed as in Equation (1).
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Figure 6. Model of shift entering the dynamical system within the disturbance process

The presence of the shift results in the following mathematical representation of the system:

yt = B ′

A′ ut−k + λ
C′

A∗ εt + 1

A∗ µt

= B

A
ut−k + λ

C

A
εt + A′

A
µt (22)

If we again assume that the system is controlled with a MV controller and apply Equation (3), and the identity
Equation (4), we obtain an expression for the system output at time t :

yt = λFεt + M2µt (23)

where

M2 =
(

F

C′

)
= (1 + m2

1z
−1 + m2

2z
−2+) · · ·

The system output is again clearly affected by the presence of the disturbance shift, but its effect is dependent
upon the coefficients of the polynomial M2, and the form of the shift.

Combining Equation (23) and the one-step-ahead predictor implementation, Equation (12), we derive the
effect of the mean shift on the process residuals:

rt = yt − ŷt |t−1 = λεt + (C′)−1µt (24)

The ability of the residuals to display the effect of the mean shift is dependent upon the inverse of the disturbance
process. It may be magnified, remain unchanged, or be reduced. This ability is also independent of the process
time delay, k.

Example 2. Consider the example of Section 3.1, with a mean shift occurring within the disturbance process as
described above. The MV two-step-ahead controller of Equation (16) remains unchanged and is still valid for
such a system. The system output becomes

yt = λFεt + M2µt = (1 + φz−1)εt + (1 + φz−1)µt

= (1 + 0.9z−1)εt + (1 + 0.9z−1)µt (25)

The output forecasts are given by Equation (18) and the residuals are found by application of Equation (24):

rt = λεt + (C′)−1µt = εt + µt (26)
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Simulation of Uncontrolled Process Output

-10

-5

0

5

10

15

1 101 201 301 401 501 601 701 801 901

Time, t

O
ut

pu
t,

y*
(t)

y*(t)

Simulation of Controlled Process Output

-6

-4

-2

0

2

4

6

1 101 201 301 401 501 601 701 801 901

Time, t

O
ut

pu
t,

y(
t)

y(t)

Simulation of 2-Step-Ahead Control Actions
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Figure 7. Simulation of the uncontrolled output, controlled output, and control signal of the system in Example 2 with k = 2
and the MV control strategy. A comparison between the uncontrolled and controlled outputs shows that the control strategy
succeeds in reducing the output variation due to the disturbances process. However, the controller does not entirely reduce
all of the variation due to the step shift in period 500. Note particularly that following a 1σ step-shift, the output of the

controlled system varies about the mean of 1.9, which is the expected value of Equation (25)

Therefore, for such a system, the ‘out-of-control’ ARLs for an SPC scheme using the system residuals
will be identical to those predicted using standard assumptions. Note that this is true for this case because
C′ = 1. Figure 7 shows the same simulation of Section 3.1 with shifts entering as part of the disturbance
process. We again see the uncontrolled process output, the controlled output, and the amount of control applied.
The disturbance deviates are exactly those of Example 1, including the size and duration of the ramping shift.
Note that because of the disturbance dynamics, the effect of the shift on the process output is amplified.
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Shewhart Chart of 1-Step-Ahead Process Residuals
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Figure 8. Shewhart, EWMA, and CUSUM charts of the residuals from the simulation results of Example 2. The standard
Shewhart chart signals in period 535, the EWMA chart signals in period 509 and the CUSUM in period 510. As in Example 1,

a 1σ step shift enters the system in period 500

Again, the controlled process output is superior to that of the uncontrolled process. However, the effect of
the shift on the controlled process output increases as the magnitude of the shift increases. Significant control is
required to compensate for these disturbances.

The standard Shewhart chart, the EWMA chart, and the CUSUM chart of the process residuals are shown
in Figure 8. The Shewhart chart signals in period 535, 36 periods after shift onset. The EWMA chart of the
residuals indicates a signal in period 509. As before, this chart was designed with ρ = 0.133 and L = 2.777,
giving an ‘in-control’ ARL of 370. The CUSUM chart detects the shift in period 510. Again, we choose h = 4.1
and k = 0.5 resulting in the same ‘in-control’ ARL as that of the EWMA chart. These detection times agree
nicely with our predicted ARLs shown in the third column of Table I.
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Table II. ARLs for Example 2

Method ARL1σ ARL2σ

Shewhart 44.1 6.5
(0.8) ( 0.1)

EWMA 9.6 4.0
(0.1) ( 0.04)

CUSUM 9.8 3.5
(0.1) (0.04)

Figure 9. Model of shift entering dynamical system within the underlying noise process

To generalize these results, a simulation study was again undertaken. A total of 2500 experimental runs were
performed as in Example 1 with a system described by Equation (23). Parameter values remain the same and
experiments were performed for two step shifts, 1σε and 2σε . The results are shown in Table II. Note that these
results verify Equation (24), our prediction for the behavior of the residuals.

Therefore, control charts may be designed without considering the effect of the disturbance dynamics on the
process residuals. The SPC practitioner does not need to update his monitoring scheme and may expect it to
behave as previously predicted3,5,6.

3.3. Shift occurs within the underlying noise process

This case may be characterized by the following equation:

dt = λ
C′

A∗ (εt + µt) (27)

where µt is the value of the mean shift at time t . If we assume a system like Equation (1), this situation may
be represented by Figure 9. This type of shift could be an example of sudden and sustained changes in the
environmental conditions affecting the output process.

The new system may be rewritten as

yt = B ′

A′ ut−k + λ
C′

A∗ (εt + µt)

= B

A
ut−k + λ

C

A
(εt + µt ) (28)
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Assuming that the system output is controlled with a MV controller and applying Equations (3) and (4),
we obtain the equation for the system output at time t :

yt = λF(εt + µt ) (29)

Again, the output behavior is affected by the presence of the process shift. The magnitude of this effect depends
upon the coefficients of the polynomial F , and the form of the mean shift.

Combining Equations (12) and (28), the effect of the shift on the process residuals is derived as

rt = yt − ŷt |t−1 = λ(εt + µt) (30)

Thus, when a shift occurs within the underlying noise process and standard SPC techniques are applied to the
process residuals, the ARLs will be exactly like those predicted. The ability of the residuals to display the effect
of the shift is unchanged by the process dynamics and is independent of the process time delay k.

Example 3. Continuing the example of Section 3.1, with a mean shift occurring as in Equation (27), we find that
the control equation, output error, and residuals will be identical to those of Example 2. The result of the SPC
monitoring will also be identical. This follows since, in Example 2, we have assumed a first-order autoregressive
disturbance process (C′ = 1), and an underlying white noise process having unit dispersion (λ = 1) in both.
We can see from Equation (30) that if λ < 1, the shift will appear to be diminished in the residuals. Conversely,
if λ > 1, the shift will be exaggerated in the residuals.

3.4. Change in dispersion

Suppose that a change in dispersion of the underlying noise process occurs in period t such that λ is replaced
by λ∗ in the system equation (2). Applying Equations (3) and (4) results in the following regulation error in
period t :

yt = λ∗Fεt = λ∗εt + λ(f1εt−1 + · · · + fk−1εt−k+1)

The one-step-ahead forecasts are found using Equation (6). From Equation (7), the residuals are derived as

rt = λ∗εt + λ(f1εt−1 + · · · + fk−1εt−k+1) − λ(f1εt−1 + · · · + fk−1εt−k+1)

= λ∗εt (31)

It can be shown that subsequent residuals in periods (t + 1), (t + 2), . . . will also take this form.
Therefore, the residuals are unaffected by the process dynamics when a change in dispersion occurs.

Process monitoring techniques which use the residuals will detect the variance shift as well as would be detected
if the process was i.i.d.

4. CONCLUSION

Several authors have recommended methods for monitoring controlled processes with standard SPC techniques.
Most of these have focused on systems which take advantage of one-step-ahead MV controllers. The output of
such a system will consist of a series of i.i.d. normal deviates. Therefore, using the output values as the plotted
statistics produces SPC charts with predictable characteristics.

However, little attention has been paid to monitoring systems which utilize k-step-ahead MV controllers.
We consider a system controlled by k-step-ahead MV controllers under three types of mean shifts and
demonstrate that the mechanism by which upsets occur influences the ability of the residuals to detect the
upsets. If shifts occur within the underlying noise process, standard SPC techniques will perform as predicted.
However, if process upsets occur independently of the disturbance process, control chart performance might
be affected. In these cases formulas have been provided which demonstrate how the residuals will be changed.
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We show that this effect is independent of the time delay, k. This information may be used to update control
chart performance predictions or serve as an aid in modifying control chart design using results derived by other
authors. We also show that the ability of the residuals to detect a change in the process dispersion is not altered
by the disturbance dynamics.

Underlying this discussion has been the assumption that the SPC practitioner possesses a significant
understanding of the process being studied. Effective application of the techniques described herein requires
explicit knowledge of both the uncontrolled and the design of the k-step-ahead MV controller. This is not a
serious problem if the monitoring scheme is designed in conjunction with the controller.
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37. Åström KJ. Introduction to Stochastic Control. Academic Press: New York, 1970.
38. Wadsworth HM, Stephens KS, Godfrey AB. Modern Methods for Quality Control and Improvement. Wiley: New York,

1986.

Authors’ biographies

Edward Nugent earned his MSc degree in Industrial and Systems Engineering at Rutgers, the State University
of New Jersey in 1998. He has worked as a consultant for companies such as IBM, Pfizer, and Raytheon in
continuous improvement and process redesign. Currently he is pursuing his PhD at Rutgers.

Melike Baykal-Gürsoy is an Associate Professor of Industrial Engineering at Rutgers, the State University
of New Jersey. She received her PhD in Systems Engineering at the University of Pennsylvania in 1988.
Her teaching and research interests are in the areas of stochastic processes, Markov decision processes,
stochastic optimization and control. She is a member of IIE and INFORMS.

Kemal Gürsoy earned his PhD degree in Operations Management/Statistics at Rutgers University in 1997.
He worked as an Assistant Professor at Long Island University, Department of Managerial Sciences, during
1996–2003. He is also working as a visiting professor in the Department of Mathematics at Bogazici University,
Istanbul, Turkey. His research interests are stochastic optimizations, adaptive control, empirical Bayes’ methods
and probabilistic risk analysis. He is a member of the American Mathematical Society, American Statistical
Association, Institute of Operations Research and Management Science.

Copyright c© 2004 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2005; 21:63–80


	1 INTRODUCTION
	2 SYSTEM MODELING
	2.1 Process model
	2.2 Minimum variance control
	2.3 Residuals for k-step-ahead MV controllers

	3 PROCESS MONITORING USING RESIDUALS
	3.1 Shift enters independently of disturbance process
	3.2 Shift occurs within the disturbance process
	3.3 Shift occurs within the underlying noise process
	3.4 Change in dispersion

	4 CONCLUSION
	Acknowledgement

	REFERENCES
	Authors' biographies


